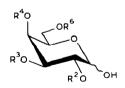
Note


¹H-N.m.r. and ¹³C-n.m.r. spectroscopy of methyl ethers of D-galactopyranose

Daphne C. Vogt, Alistair M. Stephen, and Graham E. Jackson Department of Chemistry, University of Cape Town, Rondebosch 7700 (South Africa) (Received November 7th, 1989; accepted for publication, January 10th, 1990)

¹H-N.m.r. spectroscopy of methyl ethers of D-galactopyranose in aqueous solution has been studied with particular reference to the methoxyl protons¹⁻³. The chemical shifts of the resonances of these protons depend on the anomeric configuration and the presence and orientation of vicinal OH or OMe groups⁴. In addition, the chemical shifts of the signals for MeO-2 and MeO-4 are independent of their orientation.

Analysis of the ¹³C-n.m.r. chemical shift data for mono-, di-, and oligo-saccharides, and certain methyl ethers, allowed the postulation⁵ of empirical rules that related changes in the chemical shifts of the ring carbon atoms with substitution. Earlier, it was proposed⁶ that, for hexopyranoses, the presence of an OMe group causes an upfield shift of ~ 4.5 p.p.m. of the resonances of β -carbon atoms with axial OH groups. A similar effect is known for inositols⁷.

Only incomplete n.m.r. data were available hitherto for methyl ethers of D-galactose. Complete ¹H- and ¹³C-n.m.r. spectral assignments have now been made for solutions in D₂O of α - and β -D-galactopyranose (1) and its 2- (2), 2,3-di- (3) 2,4-di- (4), 2,3,4-tri- (5), 2,4,6-tri- (6), and 2,3,4,6-tetra-O-methyl (7) derivatives.

1
$$R^2$$
, R^3 , R^4 , $R^6 = H$
2 $R^2 = Me$, R^3 , R^4 , $R^6 = H$
3 R^2 , $R^3 = Me$, R^4 , $R^6 = H$
4 R^2 , $R^4 = Me$, R^3 , $R^6 = H$
5 R^2 , R^3 , $R^4 = Me$, $R^6 = H$
6 R^2 , R^4 , $R^6 = Me$, $R^3 = H$
7 R^2 , R^3 , R^4 , $R^6 = Me$

NOTE NOTE

Signals for anomeric protons in the ¹H-n.m.r. spectra were assigned readily and formed the basis for assigning the H-2 signals via the COSY experiment. The APT experiment furnished chemical shifts for the resonance of C-6. Literature data for the ring carbon atoms and the empirical rules of Bradbury and Jenkins⁵ were used as a guide for the ¹³C resonances and as a basis for ¹H assignments via HETCOR. The ¹H chemical shifts of the OMe resonances determined by Rathbone $et\ al.^{1-3}$ were employed to assign those of methoxyl carbons in HETCOR experiments. Signal intensities were of little help, as the percentage, at equilibrium, of the less-abundant α anomer of D-Gal is increased by O-methylation⁸. Tables I–IV contain the ¹H and ¹³C assignments.

Figure 1a shows the effect of O-methylation on the chemical shifts of the resonances of the protons of D-Galp. In general, there is an upfield shift of 0.4 p.p.m., but methylation of O-3 causes the signal for H-4 to be shifted downfield by 0.2-0.3 p.p.m. Similarly, methylation of O-2 results in a downfield shift of 0.2 p.p.m. in the signal for H-1 α (but not for H-1 β). The signal of H-6 is virtually unaffected on methylation of O-6,

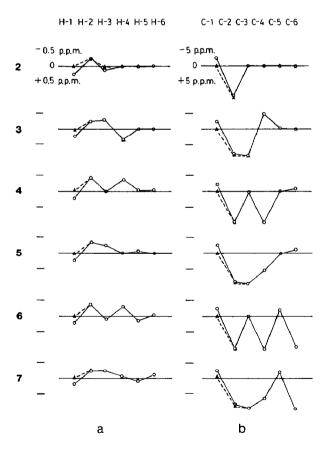


Fig. 1. Changes in the chemical shifts of the resonances of (a) H-1/6 ($\Delta \delta_{H}$, p.p.m.) and (b) C-1/6 ($\Delta \delta_{c}$) on O-methylation of p-Gal: α (-0-0-) and β (- Δ - Δ -) anomers of 2-7. Negative values of $\Delta \delta$ represent upfield shifts (shielding effects) and positive values represent downfield shifts (deshielding effects).

TABLE I $1H$ assignments (\$\delta\$, p.p.m.) for \$\alpha\$ anomers of compounds 1 to 7

Compound	H-1	H-2	H-3	H-4	H-5	H-6	MeO-2	MeO-3	MeO-4	MeO-6	J _{1,2}
1	5.24	3.78	3.81	3.95	4.06	3.72					3.26
2	5.48	3.51	3.91	3.96	4.05	3.72	3.45				3.84
3	5.48	3.52	3.53	4.25	4.03	3.72	3.43	3.40			2.41
4	5.37	3.34	3.83	3.59	3.96	3.65	3.38		3.44		3.30
5	5.45	3.45	3.58	3.96	4.01	3.73	3.43	3.48	3.50		3.65
6	5.43	3.42	3.92	3.65	4.19	3.64	3.45		3.50	3.38	3.66
7	5.43	3.45	3.58	3.92	4.15	3.62	3.43	3.48	3.49	3.39	3.59

TABLE II 1 H assignments (δ , p.p.m.) for β anomers of compounds 1 to 7

Compound	H-1	H-2	H-3	H-4	H-5	Н-6	MeO-2	MeO-3	MeO-4	MeO-6	J _{1,2}
1	4.56	3.46	3.62	3.90	3.68	3.72					7.71
2	4.60	3.19	3.66	3.84	3.63	3.70	3.59				7.92
3	4.61	3.21	3.34	4.18	3.62	3.76	3.57	3.42			7.73
4	4.49	3.04	3.64	3.54	3.56	3.65	3.51		3.44		7.83
5	4.58	3.14	3.40	3.91	3.56	3.73	3.57	3.50	3.50		7.82
6	4.55	3.12	3.71	3.61	3.78	3.64	3.58		3.50	3.38	7.84
7	4.57	3.13	3.39	3.86	3.72	3.62	3.56	3.49	3.49	3.38	7.75

TABLE III ^{13}C assignments (δ , p.p.m.) for α anomers of compounds 1 to 7

Comp	ound C-1	C-2	C-3	C-4	C-5	C-6	MeO-2	MeO-3	MeO-4	MeO-6
1	93.03	69.10	69.92	70.06	71.22	61.93				
2	90.30	78.36	69.50	69.98	71.01	61.65°	58.15			
3	90.15	77.31	78.48	65.51	70.93	62.00	57.87	56.46		
4	90.23	78.64	69.62	80.43	71.15	61.32	58.24		62.01	
5	90.11	77.64	79.21	75.93	71.18	61.43	57.96	57.33	61.56	
6	90.33	78.61	69.55	80.76	69.18	71.99	58.31		62.07	59.01
7	90.15	77.56	79.13	76.26	69.12	72.03	57.98	57.41	61.58	59.01

^a Or 61.90.

TIDDE T	
¹³ C assignments (δ , p.p.m.) for β anomers of compound	ds 1 to 7

Comp	ound C-1	C-2	C-3	C-4	C-5	C-6	MeO-2	MeO-3	MeO-4	MeO-6
1	97.20	72.62	73.55	69.50	75.89	61.73				
2	97.02	82.48	73.16	69.19	75.82	61.90^{a}	61.00			
3	97.03	81.44	82.36	65.12	75.72	61.77	60.90	56.85		
4	96.88	82.70	73.54	79.86	75.82	61.09	61.05		62.09	
5	96.85	81.73	83.08	75.47	75.77	61.21	60.96	57.74	61.68	
6	96.89	82.66	73.48	80.19	73.88	71.76	61.13		62.15	59.15
7	96.82	81.63	83.00	75.78	73.71	71.80	60.95	57.81	61.69	59.15

^a Or 61.65

TABLE IV

whereas the chemical shift of the H-5 resonance is unchanged, apart from minor variations when O-4 and O-6 are substituted.

These trends are mirrored in the 13 C spectra (Fig. 1b). O-Methylation results in a downfield shift (8–10 p.p.m.) in the resonance for C-OMe on which is superimposed an upfield shift of \sim 4.5 p.p.m. for the resonance of C-4 (axial OH or OMe) if O-3 is methylated (cf. Voelter et al.6). O-Methylation at the 2-position results in an upfield shift of 2.7–2.9 p.p.m. of the C-1 α signal but has no effect on that of C-1 β . In contrast to the 14 H spectra, the 13 C spectra are sensitive to O-methylation at the 6-position, a downfield shift of 10 p.p.m. for the C-6 resonance being the result; there is minor shielding of C-5. The effects of O-methylation at C-2 upon the resonances of H-1 and C-1, and at C-3 upon those of H-4 and C-4, are summarised in Figs. 2 and 3, respectively; O-5 has some influence on the magnitudes of the changes in shifts.

Fig. 2. Effect of methylation of O-2 on the chemical shifts of the resonances of H-1 and C-1 of α -D-Galp (R = H or Me); there are no changes for the β anomer.

OR OR
$$\Delta \delta_{H-4}$$
+ 0.25 p.p.m.

 $\Delta \delta_{C-4}$
- 4.5 p.p.m.

 $\Delta \delta_{C-4}$
H₃C

OH

Fig. 3. Effect of methylation of O-3 on the chemical shifts of the resonances of H-4 and C-4 of α - and β -D-Galp (R = H or Me).

Fig. 4. Newman projection along the O-2-C-2 bond of the α anomers of 2-7.

The general consequence of O-methylation on the chemical shift of the resonance of the α carbon can be explained⁹ by the changes in the paramagnetic and diamagnetic terms that give rise to the shielding tensor (σ). Cheney and Grant¹⁰ showed that replacement of H by Me in saturated hydrocarbons leads to a contraction of the carbon 2p orbitals, which increases (0.7 p.p.m.) the diamagnetic (shielding) and decreases (10.6 p.p.m.) the paramagnetic (deshielding) terms of the chemical shift expression. Similar results are seen for aliphatic alcohols cf. CH₃CH₂OH (δ 57) with CH₃CH₂OCH₃ (δ 67.9) and CH₃OH (δ 49) with CH₃OCH₃ (δ 57.6). On the other hand, the upfield shift of 0.4 p.p.m. of the ¹H resonances upon O-methylation is due to the neighbouring anisotropy effect^{11,12}, cf. CH₃OH (δ 3.4) and CH₃OCH₃ (δ 3.2).

The protons in γ -gauche (1,4) positions shield¹³ the corresponding carbon atoms. With oxygen as part of the connecting sequence of atoms, the effect at C-4 of O-3 methylation is shown in Fig. 3. Kochetkov et al. ¹⁴ proposed that this effect stems from a spatial interaction of the protons attached to the carbon atoms in the 1,4-gauche conformation. Figures 2 and 3 accommodate the present results. Additionally, in the conformer shown (Fig. 4, looking along the O-2-C-2 bond), hydrogen bonding between O-1 and O-2 may (cf. Usui et al. ¹⁵) contribute to the enhanced shielding of C-1 α experienced in the methylation of O-2; the rotamer displayed has the γ -gauche relationship between protons. Hydrogen bonding between HO-4 and O-3 leads to a satisfactory rotamer (Fig. 5), but as O-4 methylation has no effect on $\Delta\delta_{C-4}$ or $\Delta\delta_{H-4}$ produced by O-3 methylation, the explanation must lie in the γ -gauche inter-proton relationship.

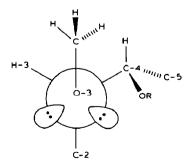


Fig. 5. Newman projection along the O-3-C-3 bond of 3 (R = H) or 5 and 7 (R = Me).

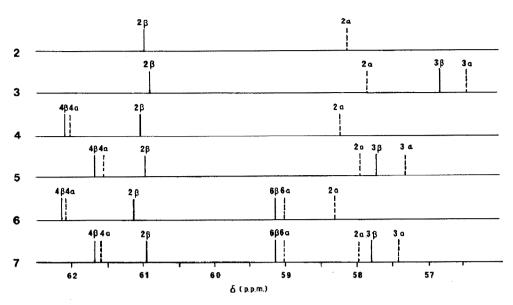


Fig. 6. Chemical shifts of the methoxyl carbon atoms for 2-7.

From Fig. 6, it is clear that the signals for OCH_3 fall into two regions, namely, upfield and downfield of 59.5 p.p.m. The downfield signals reflect the lack of steric interactions with protons in 1,4 gauche positions, whereas the upfield signals reflect such effects. MeO-3 α and MeO-3 β would be expected to interact with the corresponding protons on C-4, causing both C-4 and the carbon of MeO-3 to be more shielded.

The crystal structures of α - and β -D-Gal¹⁶ and of 2,4-di-O-Me-D-Gal hydrate have been reported¹⁷. The present n.m.r. study indicates that 2,4-di-O-Me-D-Gal adopts different conformers in solution from that of the solid hydrate.

EXPERIMENTAL

Compounds 2 and 3 were obtained as described¹⁸ and 4–7 were isolated from a hydrolysate (100°, 16 h, 0.5 m H_2SO_4) of methylated gum exudate from *Encephalartos longifolius* by column chromatography on cellulose¹⁹. Deuterium exchange was effected by thrice freeze-drying solutions in D_2O . Samples (11–32 mg) were examined at 25° as solutions in D_2O (internal Me₂CO, δ_H 2.21, δ_C 31.0), using a Varian VXR-200 spectrometer.

ACKNOWLEDGMENTS

Financial support from the C.S.I.R. (FRD) and the University of Cape Town Research Committee is acknowledged.

REFERENCES

- 1 E. B. Rathbone, A. M. Stephen, and K. G. R. Pachler, Carbohydr. Res., 20 (1971) 357-367.
- 2 E. B. Rathbone, A. M. Stephen, and K. G. R. Pachler, Carbohydr. Res., 21 (1972) 73-81.
- 3 E. B. Rathbone, A. M. Stephen, and K. G. R. Pachler, Carbohydr. Res., 21 (1972) 83-90.
- 4 E. B. Rathbone, A. M. Stephen, and K. G. R. Pachler, Carbohydr. Res., 23 (1972) 275-282.
- 5 J. H. Bradbury and G. A. Jenkins, Carbohydr. Res., 126 (1984) 125-156.
- 6 W. Voelter, E. Breitmaier, E. B. Rathbone, and A. M. Stephen, Tetrahedron, 29 (1973) 3845-3848.
- 7 D. E. Dorman, S. J. Angyal, and J. D. Roberts, J. Am. Chem. Soc., 92 (1970) 1351-1354.
- 8 E. B. Rathbone and A. M. Stephen, S. Afr. J. Sci., 69 (1973) 183.
- 9 E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, VCH, Weinheim, 1987, p. 111.
- 10 B. V. Cheney and D. M. Grant, J. Am. Chem. Soc., 89 (1967) 5319-5327.
- 11 E. D. Becker, High Resolution NMR, 2nd edn., Academic Press, New York, 1980.
- 12 J. W. Akitt, NMR and Chemistry, 2nd edn., Chapman and Hall, New York, 1983.
- 13 D. M. Grant and B. V. Cheney, J. Am. Chem. Soc., 89 (1967) 5315-5318.
- 14 N. K. Kochetkov, O. S. Chizhov, and A. S. Shashkov, Carbohydr. Res., 133 (1984) 173-185.
- 15 T. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto, J. Chem. Soc., Perkin Trans. 1, (1973) 2425-2432.
- 16 B. Sheldrick, Acta Crystallogr., Sect. B, 32 (1976) 1016-1020.
- 17 I. C. M. Dea and P. Murray-Rust, J. Chem. Soc., Perkin Trans. 2, (1974) 105-108.
- 18 A. M. Stephen, J. Chem. Soc., (1962) 2030-2036.
- 19 A. M. Stephen and D. C. Vogt, unpublished results.